Abstract

The effect of stress-induced martensite reorientation on the corrosion behavior of a nickel-titanium (NiTi) shape memory alloy (SMA) was characterized by mechanical-electrochemical techniques. This martensite reorientation influenced the passive state of NiTi SMA. These passive to active state transitions could be sensed by the global interfacial electrochemical measurements, such as electrochemical impedance spectroscopy (EIS), open circuit potential (OCP) and linear polarization resistance (LPR) methods. The increase in the loading when exposed to a corrosive environment resulted in the breakdown of the passive layer. A later repassivation stage was reached due to the formation rate becoming more dominant than the breakdown rate during loading conditions. The integration of the mechanical loading by tensile testing, strain distribution by digital image correlation (DIC) and electrochemical methods by OCP and EIS, characterized and detected the influence of the mechanical effect in the corrosion assessment and interfacial mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.