Abstract

A new method of fabrication of calcium carbonate microparticles of ellipsoidal, rhomboidal, and spherical geometries is reported by adjusting the relative concentration ratios of the initial salt solutions and/or the ethylene glycol content in the reaction medium. Morphology, porosity, crystallinity, and loading capacity of synthesized CaCO3 templates were characterized in detail. Particles harboring dextran or the enzyme guanylate kinase were obtained through encapsulation of these macromolecules using the layer-by-layer assembly technique to deposit positively and negatively charged polymers on these differently shaped CaCO3 templates and were characterized by confocal laser scanning fluorescence microscopy, fluorometric techniques, and enzyme activity measurements. The enzymatic activity, an important application of such porous particles and containers, has been analyzed in comparison with the loading capacity and geometry. Our results reveal that the particles' shape influences morphology of particles and that, as a result, affects the activity of the encapsulated enzymes, in addition to the earlier reported influence on cellular uptake. These particles are promising candidates for efficient drug delivery due to their relatively high loading capacity, biocompatibility, and easy fabrication and handling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.