Abstract

Background Permanent magnet synchronous motors (PMSM) are widely used in various industries. However, in practical applications, the time-varying nature of load torque may lead to speed fluctuations, negatively impacting the motor's control performance and stability. To mitigate these issues, this paper proposes a load torque observation method for PMSMs based on a sliding mode observer. Methods The sliding mode observer is designed to estimate the load torque and convert it into a current, which is fed back as a feedforward compensation to the q-axis current in the current closed-loop control system. The observer's dynamic performance is optimized using a genetic algorithm to minimize the Integral of Time-weighted Absolute Error (ITAE) between the observer and the actual system state. Experimental tests are conducted on a motor torque testing platform. After stabilizing the motor at 800rpm, a sudden torque of 0.5Nm is applied. Results Compared to the situation without load torque compensation, the motor speed fluctuations are reduced by approximately 60% after adding load torque compensation. Conclusions This enhancement improves the system's speed control performance during torque variations and increases the system's robustness and disturbance rejection capability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.