Abstract

As an advanced downhole instrument in drilling engineering, drilling fluid continuous wave generator (DFCWG) has great application prospects. The large load torque is one of the key problems that hinder the development of DFCWG. In this paper, based on the design theory of rotary valve and finite element method, the structure of rotary valve is designed and the load torque characteristics is analyzed and points out that the load torque has strong alternating characteristics. It is pointed out that the load torque has the characteristics of strong alternating. According to the characteristics of the load torque, the "fluid-magnetic" collaborative compensation method is proposed. The load compensation turbine and magnetic compensation device are used to compensate the DC and AC components of the load torque respectively, and the load compensation device is designed. The rationality of the design of the load compensation device is verified by simulation. Finally, the comprehensive compensation effect is analyzed by the finite element method. According to the analysis results, the "fluid-magnetic" collaborative compensation method can effectively reduce the load torque. The research results can provide technical support for DFCWG design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.