Abstract

The influence of parameters to load performances of a high-speed externally pressurized spherical gas bearing compensated by two-rows of orifices has been studied numerically based on finite element method (FEM). Reynolds equation governing the flow field in the clearance space in spherical coordinates system is transformed into a analogous style in Descartesian coordinates by parameter substitution, and Galerkin weighted residual method is applied to reduce the order of derivatives of the transformed equation. Pressure distribution on the gas-film is obtained by solving of the equation. On the basis of theories, influences of rotating speed, nominal gas-film thickness and supplying pressure to load carrying capacity and stiffness are analyzed. Comparison of performances between hydrostatic and hybrid state of the bearing has also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call