Abstract

AbstractThis article addresses a model predictive control (MPC) technique for load frequency control (LFC) system in the presence of wind power, communication delay, and denial‐of‐service (DoS) attack. In this article, communication delay is incorporated into a single area control error transmission for simplicity, wind power and load disturbance are regarded as Lipschitz nonlinear terms, as for the randomly occurring DoS attack, it is modeled as Bernoulli processes with known conditional probability. Thinking all these adverse factors to stability and the limitation of input constraint synthetically, the stability of LFC system can be guaranteed by delay‐dependent Lyapunov function lemma and a state feedback MPC controller is designed to solve the LFC problems by minimizing the infinite‐horizon objective function. Although some scholars have studied the performance degradation and instability of LFC system caused by cyber attack and/or communication delay and some very nice results have been addressed, limited works have considered the MPC approach to deal with both the problems of cyber attack and communication delay which explicitly considers the physical constraints. In addition, the delay‐dependent Lyapunov function is adopted to deal with the problem of communication delay, which results in less conservatism of the presented method. Finally, the optimization problem with input constraint is solved and proven to be recursive feasibility, and the closed‐loop system turns out to be stable. The reasonability and validity of the provided strategy is verified through several groups of simulation experiments. It illustrates that the proposed control method can keep the system frequency steady in the standard range in spite of various attack conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.