Abstract
This paper aims to better the dynamic response of interconnected power systems following any load change using the combination of multi-objective optimization algorithm-based PID and a hybrid adaptive fuzzy sliding mode. In the proposed method, a hybrid sliding surface including two subsystems’ information is introduced to produce a control effort to move both subsystems toward their related sliding surface. A feedback linearization control law is mimicked by an adaptive fuzzy controller. To compensate the error between the feedback linearization and adaptive fuzzy controller, a hitting controller is developed. The design of PID controller is formulated into a multi-objective optimization problem. The performance of suggested method is assessed on two interconnected power systems. These results validate that the suggested method confirms better disturbance rejection, keeps the control quality in different situations, reduces the frequency deviations preventing the overshoot and has more robustness to uncertainties and change in parameters in the power system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.