Abstract

Simulated annealing (SA) is a general-purpose optimization technique widely used in various combinatorial optimization problems. However, the main drawback of this technique is a long computation time required to obtain a good quality of solution. Clusters have emerged as a feasible and popular platform for parallel computing in many applications. Computing nodes on many of the clusters available today are temporally heterogeneous. In this study, multiple Markov chain (MMC) parallel simulated annealing (PSA) algorithms have been implemented on a temporally heterogeneous cluster of workstations to solve the graph partitioning problem and their performance has been analyzed in detail. Temporal heterogeneity of a cluster of workstations is harnessed by employing static and dynamic load balancing techniques to further improve efficiency and scalability of the MMC PSA algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.