Abstract

This paper focuses on low computational efficiency in simulated annealing (SA) inversion of Transient Electromagnetic (TEM) data. Asynchronous multiple Markov chains (MMC) parallel strategy is a very promising SA acceleration method, which can be accelerated almost linearly. However, this method also reduces the accuracy of the solution. To overcome this problem, we added the solution set strategy to the asynchronous MMC parallel simulated annealing (PSA) algorithm for the first time. In this new algorithm, each thread independently searches for direction and exchanges data with the solution set in the shared memory. We used both the synthetic and field data to test the new algorithm. The synthetic data tests showed that the MMC PSA results are better than those of the original MMC PSA. We analyzed the efficiency of the new algorithm. Compared with the sequential VFSA, the maximum speedup of the new algorithm is approximately 10 times. The field data test also showed that the improved MMC PSA algorithm has good practicability. These tests demonstrate that the improved algorithm is effective, showing that its convergence speed is greatly improved without reducing the accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call