Abstract
A method for the determination of load and stress distributions of the instantaneously engaged teeth of cylindrical worm gears is represented in this paper. The method is based on the assumption that both the worm and gear can be modeled as a series of spur gear slices. The exact geometry and point of load application of each slice depends on its location within the mesh. By calculating the applied load and stress for each slice, the same can be determined for the entire worm gear set. The method takes into consideration tooth stiffness variation from root to tip, tooth bending deflection, local contact deformation, tooth foundation deformation and, the influence of gear parameters on load and stress. Calculated results were found to be in agreement with experimental and analytical ones obtained from literature under given operating conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have