Abstract

BackgroundThis study aims to investigate the mechanism underlying the high level of long non-coding RNA FOXD3-AS1 in cisplatin-resistant NSCLC cells.MethodsCisplatin-resistant cells were generated from A549 cells. CCK-8 were used to evaluate cell proliferation. The FOXD3-AS1, miR-127-3p, MDM2 and MRP1 mRNA expression levels were confirmed by qRT-PCR. Protein levels of MDM2 and MRP1 were determined by western blot assay. Luciferase reporter and RNA pull-down assays were evaluated the relationship between miR-127-3p and FOXD3-AS1/MDM2. In vivo tumor growth was evaluated in a xenograft nude mice model.ResultsFOXD3-AS1 was up-regulated in cisplatin-resistant NSCLC cells (A549/DDP and H1299/DDP cells) in comparison with their parental cell lines. Overexpression of FOXD3-AS1 promoted cisplatin-resistance in A549 and H1299 cells; while FOXD3-AS1 knockdown sensitized A549/DDP and H1299/DDP cells to cisplatin treatment. FOXD3-AS1 regulated miR-127-3p expression by acting as a competing endogenous RNA, and miR-127-3p repressed MDM2 expression via targeting the 3′UTR. MiR-127-3p overexpression and MDM2 knockdown both increased the chemo-sensitivity in A549/DDP cells; while miR-127-3p knockdown and MDM2 overexpression both promoted chemoresistance in A549 cells. Further rescue experiments revealed that miR-127-3p knockdown or MDM2 overexpression counteracted the suppressive effects of FOXD3-AS1 knockdown on chemo-resistance and MRP1 expression in A549/DDP cells. In vivo studies showed that FOXD3-AS1 knockdown potentiated the antitumor effects of cisplatin treatment. Inspection of clinical samples showed the upregulation of FOXD3-AS1 and MDM2, and down-regulation of miR-127-3p in NSCLC tissues compared to normal adjacent tissues.ConclusionIn conclusion, our results suggest that LncRNA FOXD3-AS1 promotes chemo-resistance of NSCLC cells via directly acting on miR-127-3p/MDM2 axis. Our findings may provide novel perspectives for the treatment of NSCLC in patients resistant to chemotherapy.

Highlights

  • This study aims to investigate the mechanism underlying the high level of long non-coding RNA FOXD3-AS1 in cisplatin-resistant Non-small cell lung cancer (NSCLC) cells

  • The FOXD3-AS1 expression was up-regulated in NSCLC cell lines (A549 and H1299) in comparison with Normal human lung bronchial epithelial cells (NHBE)

  • Cells (Fig. 1a), and further comparison showed that FOXD3-AS1 expression was up-regulated in DDP-resistant cell lines (A549/DDP and H1299/DDP) in comparison with their parental cells lines, respectively (Fig. 1a)

Read more

Summary

Introduction

This study aims to investigate the mechanism underlying the high level of long non-coding RNA FOXD3-AS1 in cisplatin-resistant NSCLC cells. Lung cancer represents one of the most deadly tumor malignancies with patients having very low overall survival rate, due to the high metastasis of this disease [1, 2]. Non-small cell lung cancer (NSCLC) is the main type of lung and accounts for more than 80% of all the. Chemotherapy and surgical resection are the main strategies for treating NSCLC, and cisplatin-based chemotherapy has been widely used in treating NSCLC [3]. The development of cisplatin resistance has been a major obstacle in treating NSCLC [5, 6]. Exploration of novel strategies to promote cisplatin sensitivity is urgent for us to have a better control of this malignancy

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call