Abstract

Osteosarcoma is prevalent in children and adolescent. The oncogenic function of long-chain noncoding RNA (lncRNA) FGD5 antisense RNA 1 (FGD5-AS1) has been reported. However, the function of FGD5-AS1 in doxorubicin-resistance in osteosarcoma remains to be illucidated. Quantitative real-time PCR (qRT-PCR) and western blot analysis (WB) were used to measure the expression of FGD5-AS1, miR-154-5p, WNT5A and autophagy proteins. MTT assay was used to assess cell viability and transwell assay was performed to evaluate migration. A nude mouse xenograft model was developed to verify the function of FGD5-AS1 in vivo. FGD5-AS1was upregulated in doxorubicin-resistant (DXR) osteosarcoma cells. Knockdown of FGD5-AS1 suppressed osteosarcoma cell proliferation, migration, and autophagy. FGD5-AS1 upregulated WNT5A expression via sponging miR-154-5p. Furthermore, FGD5-AS1 enhanced osteosarcoma cell chemotherapy resistance through upregulation of WNT5A by inhibiting miR-154-5p. Suppression of FGD5-AS1 significantly suppressed tumor growth in nude mice. FGD5-AS1 may promote chemoresistance through WNT5A-induced autophagy by sponging miR-154-5p in osteosarcoma cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.