Abstract

Purpose Idiopathic pulmonary fibrosis (IPF) is a type of progressive lung fibrosis disease. The survival time of diagnosed IPF patients is often only 2 years. Currently much evidence showed that the epithelial–mesenchymal transition (EMT) process is the main cause of the occurrence and development of IPF. LncRNA cardiac hypertrophy related factor (CHRF) was reported to be related with IPF development. Here we explored the functions and regulatory mechanisms of CHRF on EMT in IPF. Materials and methods A549 cells were treated with transforming growth factor-β1 (TGF-β1) for 48 h to construct IPF cell model. CHRF and miR-146a expression were quantified using qPCR. The expression of L1 cell adhesion molecule (L1CAM) and EMT related indicators (E-cadherin, Vimentin, Slug and N-cadherin) were detected by qPCR and western blot. Dual luciferase reporter experiment was conducted to prove the molecular interaction of miR-146a and L1CAM, as well as CHRF and miR-146a. Results CHRF and L1CAM expression were significantly upregulated and promoted the EMT process in A549 after treatment of TGF-β1. MiR-146a was obviously down-regulated, and knockdown of CHRF inhibited the EMT process by up-regulating miR-146a, in A549 after treatment of TGF-β1. Meanwhile, overexpression of miR-146a inhibited EMT process via targeting L1CAM. In addition, L1CAM overexpression eliminated the inhibitory effect of sh-CHRF on the EMT process. Conclusions These results provided evidence that CHRF promoted EMT process in A549 after treatment of TGF-β1, which proposed a new insight for depth understanding the pathological mechanisms of IPF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call