Abstract
ABSTRACT Ovarian cancer (OC) is the fifth most common female malignant tumor and the leading cause of cancer-related death in women worldwide. Epithelial ovarian cancer (EOC) is the predominant type of OC. Investigating the mechanism underlying tumorigenesis and progression of EOC is urgent. Our previous research has shown that long non-coding RNAs (lncRNAs) CDKN2A-AS1 is upregulated in EOC tissues and cells. Furthermore, we have predicted that CDKN2A-AS1 is associated with the bone morphogenetic protein (BMP)-SMAD signaling pathway, which is negatively regulated by the sclerostin domain containing 1 (SOSTDC1). Therefore, we conjecture that the CDKN2A-AS1 regulate BMP-SMAD signaling pathway via interacting with SOSTDC1, which need more investigation. Moreover, the functions of the BMP-SMAD signaling pathway and the SOSTDC1 on EOC are still unclear. Herein, we unearthed that CDKN2A-AS1, BMP2/4/7, SMAD1/5/9 and phosphorylation of SMAD1/5/9 (p-SMAD1/5/9) were upregulated in EOC tissues and cells, whereas SOSTDC1 was downregulated in EOC tissues and cells. We firstly demonstrated that CDKN2A-AS1 bound directly with the SOSTDC1. CDKN2A-AS1 downregulated the expression of SOSTDC1, but upregulated the expression of BMP2/4/7, SMAD1/5/9, and p-SMAD1/5/9. CDKN2A-AS1 promoted the proliferation, migration, invasion of EOC cells and tumor growth in vivo, whereas SOSTDC1 inhibited the proliferation, migration, invasion of EOC cells. Knockdown SOSTDC1 rescued the inhibitory effect of si-lncRNA CDKN2A-AS1 on the EOC cells proliferation, migration and invasion. These results demonstrated that CDKN2A-AS1activated the BMP-SMAD signaling pathway by directly bind with SOSTDC1 to promote EOC tumor growth. CDKN2A-AS1/SOSTDC1 axis may provide a novel therapeutic strategy for EOC treatment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have