Abstract

Abstract The traditional approach with experimental raindrop size data has been to use the method of moments in the fitting procedure to estimate the parameters for the raindrop size distribution function. However, the moment method is known to be biased and can have substantial errors. Therefore, the L-moment method, which is widely used by hydrologists, was investigated as an alternative. The L-moment method was applied, along with the moment and maximum likelihood methods, to samples taken from simulated gamma raindrop populations. A comparison of the bias and the errors involved in the L-moments, moments, and maximum likelihood procedures shows that, with samples covering the full range of drop sizes, L-moments and maximum likelihood outperform the method of moments. For small sample sizes the moment method gives a large bias and large error while the L-moment method gives results close to the true population values, outperforming even maximum likelihood results. Because the goal of this work is to understand the properties of the various fitting procedures, the investigation was expanded to include the effects of the absence of small drops in the samples (typical disdrometer minimum size thresholds are 0.3–0.5 mm). The results show that missing small drops (due to the instrumental constraint) can result in a large bias in the case of the L-moment and maximum likelihood fitting methods; this bias does not decrease much with increasing sample size. Because the very small drops have a negligible contribution to moments of order 2 or higher, the bias in the moment methods seems to be about the same as in the case of full samples. However, when moments of order less than 2 are needed (as in the case of modelers using moments 0 and 3), the moment method gives much larger bias. Therefore a modification of these methods is needed to handle the truncated-data situation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call