Abstract
In this paper, we present a linear matrix inequality (LMI)-based solution to implement H-two and Hinfinity decentralized robust control strategies. Appropriate parametrization of optimal H-two and H-infinity controllers is used. The general formulation of the decentralized control design leads to the optimal determination of both the state feedback gains and the observer gains of the decentralized controllers. This formulation is two folds: first, a centralized controller is obtained, and then, a simplified decentralized solution is derived by optimizing only the observer gains. The mathematical determination of these gains is formulated as an LMI optimization problem that can be easily solved using LMI solvers. As an experimental evaluation of these controllers, a real time application to an aerothermic process is carried out. A continuous-time model of the process obtained with a suitable direct continuous-time identification approach is elaborated. Results illustrating the real performance obtained from the H-two and H-infinity decentralized controllers are discussed and compared with the centralized ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.