Abstract

Iterative redesign techniques are proposed to integrate the design of the structural parameters and the active control parameters for vector second-order lumped-parameter structural systems. The objective is to minimize the required active control effort to satisfy given output variance constraints and robust performance constraints. The problem is formulated as an iterative sequential control design followed by control/structure redesign. Each step of the iterative algorithm is formulated as a Linear Matrix Inequality (LMI) optimization problem that can be solved effectively using available LMI solvers. Convergence of the proposed algorithm to a solution that provides improved control effort and robust stability compared to the single- step structural design followed by control design is guaranteed. Both static state-feedback and dynamic output feedback problems are considered. Numerical examples demonstrate the use of the proposed iterative algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.