Abstract
Humans and animals have the ability to continuously learn new information over their lifetime without losing previously acquired knowledge. However, artificial neural networks struggle with this due to new information conflicting with old knowledge, resulting in catastrophic forgetting. The complementary learning systems (CLS) theory (McClelland and McNaughton, 1995; Kumaran et al. 2016) suggests that the interplay between hippocampus and neocortex systems enables long-term and efficient learning in the mammalian brain, with memory replay facilitating the interaction between these two systems to reduce forgetting. The proposed Lifelong Self-Supervised Domain Adaptation (LLEDA) framework draws inspiration from the CLS theory and mimics the interaction between two networks: a DA network inspired by the hippocampus that quickly adjusts to changes in data distribution and an SSL network inspired by the neocortex that gradually learns domain-agnostic general representations. LLEDA’s latent replay technique facilitates communication between these two networks by reactivating and replaying the past memory latent representations to stabilize long-term generalization and retention without interfering with the previously learned information. Extensive experiments demonstrate that the proposed method outperforms several other methods resulting in a long-term adaptation while being less prone to catastrophic forgetting when transferred to new domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.