Abstract

Despite huge success, deep networks are unable to learn effectively in sequential multitask learning settings as they forget the past learned tasks after learning new tasks. Inspired from complementary learning systems theory, we address this challenge by learning a generative model that couples the current task to the past learned tasks through a discriminative embedding space. We learn an abstract generative distribution in the embedding that allows generation of data points to represent past experience. We sample from this distribution and utilize experience replay to avoid forgetting and simultaneously accumulate new knowledge to the abstract distribution in order to couple the current task with past experience. We demonstrate theoretically and empirically that our framework learns a distribution in the embedding, which is shared across all tasks, and as a result tackles catastrophic forgetting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.