Abstract
The total variation (TV) regularization has been widely used in various applications related to hyperspectral (HS) signal and image processing due to its potential in modeling the underlying smoothness of HS data. However, most existing TV norms usually tend to generate spatial oversmoothing or artifacts. To this end, we propose a novel l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> - l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> hybrid TV ( l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> - l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> HTV) regularization with the applications to HS mixed noise removal and compressed sensing (CS). More specifically, l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> - l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> HTV can be regarded as a globally and locally integrated TV regularizer, where the l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> gradient constraint is incorporate into the l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> spatial-spectral TV ( l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> -SSTV). l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> -SSTV is capable of exploiting the local structure information across both spatial and spectral domains, while the l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> gradient can promote a globally spectral-spatial smoothness by directly controlling the number of nonzero gradients of HS images. This efficient combination considers more comprehensive prior knowledge of HS images, yielding sharper edge preservation and resolving the above drawbacks of existing pure TV norms. More significantly, l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> - l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> HTV can be easily injected into HS-related processing models, and an effective algorithm based on the alternating direction method of multipliers (ADMM) is developed to solve the optimization problems. Extensive experiments conducted on several HS data sets substantiate the superiority and effectiveness of the proposed method in comparison with many state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.