Abstract
Hydrogen gas (H2) therapy, recognized for its inherent biosafety, holds significant promise as an anti-cancer strategy. However, the efficacy of H2 treatment modalities is compromised by their reliance on systemic gas administration or chemical reactions generation, which suffers from low efficiency, poor targeting, and suboptimal utilization. In this study, living therapeutics are employed using photosynthetic bacteria Rhodobacter sphaeroides for in situ H2 production combined with near-infrared (NIR) mediated photothermal therapy. Living R. sphaeroides exhibits strong absorption in the NIR spectrum, effectively converting light energy into thermal energy while concurrently generating H2. This dual functionality facilitates the targeted induction of tumor cell death and substantially reduces collateral damage to adjacent normal tissues. The findings reveal that integrating hydrogen therapy with photothermal effects, mediated through photosynthetic bacteria, provides a robust, dual-modality approach that enhances the overall efficacy of tumor treatments. This living therapeutic strategy not only leverages the therapeutic potential of both hydrogen and photothermal therapeutic modalities but also protects healthy tissues, marking a significant advancement in cancer therapy techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.