Abstract
Optical nanoprobes, designed to emit or collect light in the close proximity of a sample, have been extensively used to sense and image at nanometer resolution. However, the available nanoprobes, constructed from artificial materials, are incompatible and invasive when interfacing with biological systems. In this work, we report a fully biocompatible nanoprobe for subwavelength probing of localized fluorescence from leukemia single-cells in human blood. The bioprobe is built on a tapered fiber tip apex by optical trapping of a yeast cell (1.4 μm radius) and a chain of Lactobacillus acidophilus cells (2 μm length and 200 nm radius), which act as a high-aspect-ratio nanospear. Light propagating along the bionanospear can be focused into a spot with a full width at half-maximum (fwhm) of 190 nm on the surface of single cells. Fluorescence signals are detected in real time at subwavelength spatial resolution. These noninvasive and biocompatible optical probes will find applications in imaging and manipulation of biospecimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.