Abstract

Imaging applications in the terahertz (THz) frequency range are severely restricted by diffraction. Near-field scanning probe microscopy is commonly employed to enable mapping of the THz electromagnetic fields with sub-wavelength spatial resolution, allowing intriguing scientific phenomena to be explored, such as charge carrier dynamics in nanostructures and THz plasmon-polaritons in novel 2D materials and devices. High-resolution THz imaging, so far, has relied predominantly on THz detection techniques that require either an ultrafast laser or a cryogenically cooled THz detector. Here, we demonstrate coherent near-field imaging in the THz frequency range using a room-temperature nanodetector embedded in the aperture of a near-field probe, and an interferometric optical setup driven by a THz quantum cascade laser. By performing phase-sensitive imaging of strongly confined THz fields created by plasmonic focusing, we demonstrate the potential of our novel architecture for high-sensitivity coherent THz imaging with sub-wavelength spatial resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.