Abstract

Strategies of renewable energy production from photosynthetic microorganisms are gaining great scientific interest as ecosustainable alternatives to fossil fuel depletion. Green microalgae have been thoroughly investigated as living components to convert solar energy into photocurrent in biophotovoltaic (BPV) cells. Conversely, the suitability of diatoms in BPV cells has been almost completely unexplored so far, despite being the most abundant class of photosynthetic microorganisms in phytoplankton and of their good adaptability and resistance to harsh environmental conditions, including dehydration, high salinity, nutrient starvation, temperature, or pH changes. Here, we demonstrate the suitability of a series of diatom species (Phaeodactylum tricornutum, Thalassiosira weissflogii, Fistulifera pelliculosa, and Cylindrotheca closterium), to act as biophotoconverters, coating the surface of indium tin oxide photoanodes in a model BPV cell. Effects of light intensity, cell density, total chlorophyll content, and concentration of the electrochemical mediator on photocurrent generation efficiency were investigated. Noteworthily, biophotoanodes coated with T. weissflogii diatoms are still photoactive after 15 days of dehydration and four rewetting cycles, contrary to analogue electrodes coated with the model green microalga Dunaliella tertiolecta. These results provide the first evidence that diatoms are suitable photosynthetic microorganisms for building highly desiccation-resistant biophotoanodes for durable BPV devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.