Abstract

Liver cancer is one of the most common types of cancers in Asia with a high mortality rate. A common method for liver cancer diagnosis is the manual examination of histopathology images. Due to its laborious nature, we focus on alternate deep learning methods for automatic diagnosis, providing significant advantages over manual methods. In this paper, we propose a novel deep learning framework to perform multi-class cancer classification of liver hepatocellular carcinoma (HCC) tumor histopathology images which shows improvements in inference speed and classification quality over other competitive methods. The BreastNet architecture proposed by Togacar et al. shows great promise in using convolutional block attention modules (CBAM) for effective cancer classification in H&E stained breast histopathology images. As part of our experiments with this framework, we have studied the addition of atrous spatial pyramid pooling (ASPP) blocks to effectively capture multi-scale features in H&E stained liver histopathology data. We classify liver histopathology data into four classes, namely the non-cancerous class, low sub-type liver HCC tumor, medium sub-type liver HCC tumor, and high sub-type liver HCC tumor. To prove the robustness and efficacy of our models, we have shown results for two liver histopathology datasets-a novel KMC dataset and the TCGA dataset. Our proposed architecture outperforms state-of-the-art architectures for multi-class cancer classification of HCC histopathology images, not just in terms of quality of classification, but also in computational efficiency on the novel proposed KMC liver data and the publicly available TCGA-LIHC dataset. We have considered precision, recall, F1-score, intersection over union (IoU), accuracy, number of parameters, and FLOPs as metrics for comparison. The results of our meticulous experiments have shown improved classification performance along with added efficiency. LiverNet has been observed to outperform all other frameworks in all metrics under comparison with an approximate improvement of [Formula: see text] in accuracy and F1-score on the KMC and TCGA-LIHC datasets. To the best of our knowledge, our work is among the first to provide concrete proof and demonstrate results for a successful deep learning architecture to handle multi-class HCC histopathology image classification among various sub-types of liver HCC tumor. Our method shows a high accuracy of [Formula: see text] on the proposed KMC liver dataset requiring only 0.5739 million parameters and 1.1934 million floating point operations per second.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.