Abstract

This paper presents an approach to detection and segmentation of liver tumors in 3D computed tomography (CT) images. The automatic detection of tumor can be formulized as novelty detection or two-class classification issue. The method can also be used for tumor segmentation, where each voxel is to be assigned with a correct label, either a tumor class or nontumor class. A voxel is represented with a rich feature vector that distinguishes itself from voxels in different classes. A fast learning algorithm Extreme Learning Machine (ELM) is trained as a voxel classifier. In automatic liver tumor detection, we propose and show that ELM can be trained as a one-class classifier with only healthy liver samples in training. It results in a method of tumor detection based on novelty detection. We compare it with two-class ELM. To extract the boundary of a tumor, we adopt the semi-automatic approach by randomly selecting samples in 3D space within a limited region of interest (ROI) for classifier training. Our approach is validated on a group of patients' CT data and the experiment shows good detection and encouraging segmentation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call