Abstract

IntroductionDespite the widespread use of chemical and biological nano-silver are in industry, their side effects on hepatocytes have been less studied. On the other hand, different types of physical activities may increase liver resistance to toxins. Therefore, the aim of this study was to evaluate the resistance of hepatocytes to receiving chemical versus biological silver nanoparticles in aerobic and anaerobic pre-conditioned rats. Materials and methods45 male Wistar rats with similar average range of age (8–12 weeks) and weight (180–220 g), were randomly divided normally into 9 groups, including Control (C), Aerobic (A), Anaerobic (AN), Biological nano-silver (BNS), Chemical nano-silver (CNS), Biological nano-silver + Aerobic (BNS+A), Biological nano-silver + Anaerobic (BNS+AN), Chemical nano-silver + Aerobic (CNS+A) and Chemical nano-silver + Anaerobes (CNS+AN). Prior to injection, rats trained on a rodent treadmill, 10 weeks, 3 sessions per week, according to aerobic and anaerobic protocols.Then, 48 h after the last training session, the rats received 10 % of their body weight, chemical and biological nanosilver intraperitoneally. Liver enzymes (ALT, AST, and ALP) and liver tissue were sent to the relevant laboratories for further evaluation. ResultsResults showed that the weight of rats in all groups of physical pre-conditioning, decreased comparison to the control and non-exercise groups, and this decrease was much greater in the anaerobic group (p-value=0.045). Also, the distance traveled in the progressive endurance running a test on a rodent treadmill, increased significantly in the training groups compared to the nano-exercise and control groups (p-value=0.001). Also, the results showed that the level of ALT in chemical nano-silver (p-value=0.004) and biological nano-silver (p-value=0.044), increased significantly compared to other groups. Also, histopathological results showed that nano-silver injection affects the structure of the liver of male Wistar rats and causes inflammation, hyperemia and destruction of liver cells, especially in chemical nano-silver. ConclusionThe results of the present study showed that chemical silver nanoparticles cause liver damage more than comparison biological ones. Also, physical pre-conditioning increases hepatocyte resistance to toxic nanoparticle doses and aerobic preparation appears to be more effective than anaerobic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call