Abstract
Background & Aims: Capillarization, characterized by loss of differentiation of liver sinusoidal endothelial cells (LSECs), pre- cedes the onset of hepatic fibrosis. We investigated whether restora- tion of LSEC differentiation would normalize crosstalk with activated hepatic stellate cells (HSC) and thereby promote quiescence of HSC and regression of fibrosis. Methods: Rat LSECs were cultured with inhibitors and/or agonists and examined by scanning electron microscopy for fenestrae in sieve plates. Cirrhosis was induced in rats using thioacetamide, followed by administration of BAY 60-2770, an activator of soluble guanylate cyclase (sGC). Fibrosis was assessed by Sirius red staining; expression of a-smooth muscle actin was measured by immunoblot analysis. Results: Maintenance of LSEC differentiation requires vascular endothelial growth factor-A stimulation of nitric oxide-dependent signaling (via sGC and cyclic guanosine monophosphate) and nitric oxide-independent signaling. In rats with thioacetamide-induced cir- rhosis, BAY 60-2770 accelerated the complete reversal of capillariza- tion (restored differentiation of LSECs) without directly affecting activation of HSCs or fibrosis. Restoration of differentiation to LSECs led to quiescence of HSCs and regression of fibrosis in the absence of further exposure to BAY 60-2770. Activation of sGC with BAY 60- 2770 prevented progression of cirrhosis, despite continued adminis- tration of thioacetamide. Conclusions: The state of LSEC differentiation plays a pivotal role in HSC activation and the fibrotic process. Abstract: The ability of the liver to regenerate is crucial to protect liver function after injury and during chronic disease. Increases in hepatocyte growth factor (HGF) in liver sinusoidal endothelial cells (LSECs) are thought to drive liver regeneration. However, in contrast to endothelial progenitor cells, mature LSECs express little HGF. Therefore, we sought to establish in rats whether liver injury causes BM LSEC progenitor cells to engraft in the liver and provide increased levels of HGF and to examine the relative contribution of resident and BM LSEC progenitors. LSEC label-retaining cells and progenitors were identified in liver and LSEC progenitors in BM. BM LSEC progen- itors did not contribute to normal LSEC turnover in the liver. How- ever, after partial hepatectomy, BM LSEC progenitor proliferation and mobilization to the circulation doubled. In the liver, one-quarter of the LSECs were BM derived, and BM LSEC progenitors differenti- ated into fenestrated LSECs. When irradiated rats underwent partial hepatectomy, liver regeneration was compromised, but infusion of LSEC progenitors rescued the defect. Further analysis revealed that BM LSEC progenitors expressed substantially more HGF and were more proliferative than resident LSEC progenitors after partial hepatectomy. Resident LSEC progenitors within their niche may play a smaller role in recovery from partial hepatectomy than BM LSEC progenitors, but, when infused after injury, these progenitors engrafted and expanded markedly over a 2-month period. In conclusion, LSEC progenitor cells are present in liver and BM, and recruitment of BM LSEC progenitors is necessary for normal liver regeneration.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have