Abstract

Simple SummaryLiver receptor homolog-1 (LRH-1) is highly observed in tissues with secretory function, such as the ovaries, suggesting that LRH-1 may play an essential role in the ovarian endocrine. In particular, ovarian granulosa cells (GCs) are the functional cells that produce steroid hormones. The fate of GCs directly affects follicular development or atresia. These effects were lost in granulosa-specific LRH-1-knockout mice, showing that LRH-1 is a central modulator of ovarian function. However, the underlying mechanism LRH-1 in the bovine ovaries remains unclear. We aimed to detect the effect of LRH-1 on steroid hormones in bovine GCs and explore the potential relationship between LRH-1 and the fate of GCs. The results show that LRH-1 was specifically highly expressed in GCs of atretic follicles. Mechanistically, LRH-1 induced the apoptosis of bovine GCs by the progestogen receptor signaling pathway. While this finding provided new ideas for the study of follicular atresia, it also provided a theoretical basis for the clinical diagnosis and treatment for infertility in cow.The purpose of the present investigation was to assess the function of LRH-1 on GCs and the mechanisms involved. Here, LRH- was highly expressed in the bovine GCs of atretic follicles. Treatment with 50 μM of LRH-1 agonist (DLPC) significantly induced the expression of LRH-1 (p < 0.05). In particular, LRH-1 activation blocked the progestogen receptor signaling pathway via downregulating progesterone production and progestogen receptor levels (p < 0.05), but had no effect on 17 beta-estradiol synthesis. Meanwhile, LRH-1 activation promoted the apoptosis of GCs and increased the activity of caspase 3 (p < 0.05). Importantly, upregulating the progestogen receptor signaling pathway with progestogen could attenuate the LRH-1-induced proapoptotic effect. Moreover, treatment with progestogen decreased the activity of the proapoptotic gene caspase 3 and increased the expression of antiapoptotic gene Bcl2 in LRH-1 activated GCs (p < 0.05). Taken together, these results demonstrate that LRH-1 might be dependent on the progestogen receptor signaling pathway to modulate bovine follicular atresia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.