Abstract

Liver receptor homolog-1 (LRH-1) is a nuclear receptor that controls a variety of metabolic pathways. In cultured cells, LRH-1 induces the expression of CYP7A1 and CYP8B1, key enzymes in bile salt synthesis. However, hepatic Cyp7a1 mRNA levels were not reduced upon hepatocyte-specific Lrh-1 deletion in mice. The reason for this apparent paradox has remained elusive. We describe a novel conditional whole-body Lrh-1 knockdown (LRH-1-KD) mouse model to evaluate the dependency of bile salt synthesis and composition on LRH-1. Surprisingly, Cyp7a1 expression was increased rather than decreased under chow-fed conditions in LRH-1-KD mice. This coincided with a significant reduction in expression of intestinal Fgf15, a suppressor of Cyp7a1 expression, and a 58% increase in bile salt synthesis. However, when fecal bile salt loss was stimulated by feeding the bile salt sequestrant colesevelam, Cyp7a1 expression was up-regulated in wildtype mice but not in LRH-1-KD mice (+593% in wildtype versus +9% in LRH-1-KD). This translated into an increase in bile salt synthesis of +272% in wildtype versus +21% in LRH-1-KD mice. Our data provide mechanistic insight into a missing link in the maintenance of bile salt homeostasis during enhanced fecal loss and support the view that LRH-1 controls Cyp7a1 expression from two distinct sites, i.e., liver and ileum, in the enterohepatic circulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call