Abstract

BackgroundFeed costs are a major expense in the production of beef cattle. Individual variation in the efficiency of feed utilization may be evident through feed efficiency-related phenotypes such as those related to major energetic sinks. Our objectives were to assess the relationships between feed efficiency with liver morphometry and metabolic blood profile in feedlot beef cattle.MethodsTwo populations (A = 112 and B = 45) of steers were tested for feed efficiency. Blood from the 12 most (efficient) and 12 least feed inefficient (inefficient) steers from population A was sampled hourly over the circadian period. Blood plasma samples were submitted for analysis on albumin, aspartate aminotransferase, γ-glutamyl transpeptidase urea, cholesterol, creatinine, alkaline phosphatase, creatine kinase, lipase, carbon dioxide, β-hydroxybutyrate, acetate and bile acids. Liver tissue was also harvested from 24 steers that were blood sampled from population A and the 10 steers with divergent feed efficiency in each tail of population B was sampled for microscopy at slaughter. Photomicroscopy images were taken using the portal triad and central vein as landmarks. Histological quantifications included cross-sectional hepatocyte perimeter and area, hepatocyte nuclear area and nuclei area as proportion of the hepatocyte area. The least square means comparison between efficient and inefficient steers for productive performance and liver morphometry and for blood analytes data were analyzed using general linear model and mixed model procedures of SAS, respectively.ResultsNo differences were observed for liver weight; however, efficient steers had larger hepatocyte (i.e. hepatocyte area at the porta triad 323.31 vs. 286.37 µm2) and nuclei dimensions at portal triad and central vein regions, compared with inefficient steers. The metabolic profile indicated efficient steers had lower albumin (36.18 vs. 37.65 g/l) and cholesterol (2.62 vs. 3.05 mmol/l) and higher creatinine (118.59 vs. 110.50 mmol/l) and carbon dioxide (24.36 vs. 23.65 mmol/l) than inefficient steers.ConclusionsImproved feed efficiency is associated with increased metabolism by the liver (enlarged hepatocytes and no difference on organ size), muscle (higher creatinine) and whole body (higher carbon dioxide); additionally, efficient steers had reduced bloodstream pools of albumin and cholesterol. These metabolic discrepancies between feed efficient and inefficient cattle may be determinants of productive performance.

Highlights

  • Feed costs are a major expense in the production of beef cattle

  • The circadian pattern of the blood analytes differing between efficient and inefficient steers are presented in Discussion Steers were monitored for productive performance during the finishing phase of the beef cattle production cycle; a period which is impacted by major expenses associated with the rich diets fed to ensure fast growth and desirable carcass composition [1]

  • We suggest that the myriad of liver functional differences (i.e., [31, 32]) influencing feed efficiency could be related to the processes involved with production, storage and secretion of albumin by the hepatocytes, which could influence the histomorphometric differences observed

Read more

Summary

Introduction

Feed costs are a major expense in the production of beef cattle. Individual variation in the efficiency of feed utilization may be evident through feed efficiency-related phenotypes such as those related to major energetic sinks. An avenue for decreasing feeding costs is the improvement of feed utilization through utilization of cattle with improved feed efficiency. The identification of such cattle is limited by practical phenotypes for feed efficiency with application in commercial herds. The evaluation of physiological aspects underlying feed efficiency has been studied in beef cattle through residual feed intake (RFI) [2, 3]. This feed efficiency measure reflects the variation in feed intake upon adjustment for body size, body weight gain and body composition. The residual of this determination represents variation in the requirements for basal metabolic processes rather than differences in productivity, constituting a relevant trait in the search of biological indicators for feed efficiency

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call