Abstract
Polyunsaturated fatty acids (PUFAs) can be oxygenated by mammalian hepatic P450s to a series of metabolites. The most prominent of these are formed by omega- and (omega-1)-hydroxylation, epoxidation of the double bonds or bisallylic hydroxylation. The object of the present investigation was to determine whether similar oxygenations are catalyzed by liver microsomes of the yellow rat snake (Elaphe obsoleta) and the American bullfrog (Rana catesbeiana). Liver microsomes were incubated with [1-14C]-labeled arachidonic (AA), eicosapentaenoic (EPA), and linoleic acids (LA) in the presence or absence of 1 mM NADPH, and the major metabolites were analyzed by reverse-phase and straight-phase high performance liquid chromatography and capillary gas chromatography-mass spectroscopy. No metabolites were produced in the absence of NADPH. Profiles of metabolites were different depending on the organism and the acclimation state. In all incubations, EPA was the most effective substrate utilized and LA the least effective. The major products from EPA were 19-HEPE, 13-HEPE, and 20-HEPE from cold-acclimated (5 degrees C), warm-acclimated (22 degrees C) frogs, and snakes (22 degrees C), respectively. In contrast, 20-HETE production from AA was greater than 19-HETE in all three. Cold-acclimated frog liver microsomes produced significantly more of all metabolites when compared with microsomes from warm-acclimated frogs. We conclude that amphibian and snake liver can catalyze epoxidation and hydroxylation of PUFAs and that products are species-specific and acclimation-state dependent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.