Abstract
G-quadruplex (G4) structures exist in the single-stranded DNA of chromatin and regulate genome function. However, the native chromatin G4 landscape in living cells has yet to be fully characterized. Herein, a genetic-encoded live-cell G4 identifier probe (LiveG4ID) is constructed and its cellular localization, biocompatibility, and G4-binding specificity is evaluated. By coupling LiveG4ID with cleavage under targets and tagmentation (CUT&Tag), LiveG4ID-seq, a method for mapping native chromatin G4 landscape in living cells with high accuracy is established. Compared to the conventional G4 CUT&Tag method, LiveG4ID-seq can identify more chromatin G4 signals and have a higher ratio of true positive signals. Using LiveG4ID-seq, the dynamic landscape of chromatin G4 structures during the cell cycle is profiled. It is discovered that chromatin G4 structures are prevalent in the promoter regions of cell cycle-specific genes, even in the early M phase when the chromatin is condensed. These data demonstrate the capacity of LiveG4ID-seq to profile a more accurate G4 landscape in living cells and promote future studies on chromatin G4 structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.