Abstract
The eastern slope of Garmaksla, a flat-topped mountain at the western margin of Billefjorden, Svalbard, is affected by mass movements of different types. Rotational rock slides, rock fall and a rock avalanche affecting the coastal cliff are shallow surface expressions covering a larger rock mass instability that is bordered to the west by the Balliolbreen Fault. This structural feature is part of the Billefjorden Fault Zone and accommodated multi-phase deformation since Devonian time. Based on a comprehensive morpho-structural analysis, the mapped surface features and rock slope failures are explained by a compound rock slide model that reveals a litho-structural control on the type and mechanism of slope instability. The Balliolbreen Fault serves as an inherited zone of weakness that is reactivated as the rear rupture surface of the rock slide. In addition, favourably oriented bedding planes and pre-existing fault zones serve as prime conditioning factors for the compound rock slide. A postglacial age of at least 6 ka is derived from 14 C dated sediments of Garmaksla Lake, a perennial sag pond along the main scarp. Although the current state of activity of the compound rock slide is unclear, an increase of shallow slope instabilities is expected owing to climate warming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Quarterly Journal of Engineering Geology and Hydrogeology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.