Abstract
Regional three-dimensional inversions of teleseismic P-wave travel time residuals recorded by high-frequency regional and local seismic networks operating along the Western Alps and surrounding regions were carried out and lithosphere and upper mantle P-wave velocity models down to 300 km were obtained. Residuals of more than 500 teleseismic events, recorded by 98 fixed and temporary seismic stations, have been inverted. The comparison between real residuals and the ones obtained from tomographic model indicates that the method is able to solve the feature of the regional heterogeneities. Where the resolution is good, coherent lithospheric and upper mantle structures are imaged. In the shallower layers, high- and low-velocity anomalies follow the structural behaviour of the Alpine-Apenninic chains showing the existence of very strong velocity contrasts. In the deepest layers, velocity contrast decreases however two deep-seated high-velocity structures are observed. The most extended in depth and approximately trending NE-SW has been interpreted as a wreck of the oldest subduction responsible of the Alpine orogenesis. The second one, connected to the northwestern sector of the Apenninic chain, appears to vanish at depths greater than 180 km and is probably due to still active Apenninic roots. Cross-sections depict the spatial trend of perturbations and in particular outline the sub-vertical character of the Alpine and Apenninic anomalies. Under the Ligurian Sea, the 3-D inversion confirms the uplift of the asthenosphere in agreement with the tectonic evolution of the basin.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have