Abstract

Lithium lanthanum titanate La2/3-xLi3xTiO3 (LLTO) has the potential to exhibit the highest Li-ion conductivity among oxide-based electrolytes because of the fast Li-ion diffusion derived from its crystal structure. Herein, bulk Li-ion conductivity of up to σbulk = 4.0 × 10-3 S/cm at 300 K, which is approximately three to four times higher than that of LLTO polycrystals, was demonstrated using LLTO single crystals, and their dependence on crystal domain orientation was examined. A change in the activation energy, which was previously obscured because of random crystal orientation, was observed at approximately 260 K. Furthermore, electron microscopy analysis indicated that the ionic conductivity of LLTOs remained higher because the region with the highest ionic conductivity was tilted away from the ideal conduction orientation. The results reported herein provide the highest conductivity in LLTO and important insights into their crystal structures, enabling higher conductivity in novel oxide-based electrolyte design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.