Abstract

Post-collisional K-rich volcanic rocks (KVRs) can provide an opportunity to constrain the architecture of the lithosphere and the mechanisms of plateau uplift. However, their petrogenesis and geodynamic setting remain in dispute. Lithium concentrations and isotopic compositions of 87 potassic, ultrapotassic and Mg-rich potassic volcanic rocks (PVRs, UPVs, and MPRs, respectively) in SW Tibet, along with new Pb–Sr–Nd isotope data and whole-rock analyses, are used to constrain their mantle source and genesis. These rocks are characterized by very similar δ7Li values: PVRs vary from −4.9‰ to +3.2‰, UPVs from −3.9‰ to +1.7‰, and MPRs from −1.2‰ to +3.5‰. They can be classified into two groups: Group I (19 out of 87 samples) with heavier δ7Li values (+1.0‰ to +3.5‰) similar to those reported for mid-ocean-ridge and ocean-island basalts (MORBs and OIBs, respectively), and Group II (68 out of 87 samples) with lighter values (−4.9‰ to +1.0‰) similar to those of Indian lower crust. These variable isotopic compositions may record the isotopic signature of the early-middle Miocene subcontinental lithospheric mantle (SCLM). This paper demonstrates the existence of isotopically light mantle domains beneath the Lhasa terrane, which were ascribed to the interaction with fluids/melts derived from the subducted Indian lower crust. The modeling curves of Indian lower crust with a metasomatized mantle composition fully account for compositional variations in the PVRs, UPVs, and MPRs. They were generated by the partial melting of SCLM, which was metasomatized by fluids/melts derived from the subducted Indian lower crust (ca. 4–14%, ca. 4–10%, and ca. 6–10% for the PVRs, UPVs, and MPRs, respectively). The Li isotopic data indicate that the Indian lower crust was subducted beneath the central Lhasa subterrane, and this sheds new light on the formation of the Tibet Plateau.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call