Abstract

Accurate estimation of the state of charge (SOC) of a lithium-ion battery is one of the most crucial issues of battery management system (BMS). Existing methods can achieve accurate estimation of the SOC under stable working conditions. However, they may result in inaccuracy under unstable working conditions such as dynamic cycles and different temperature conditions. This is due to the fact that the dynamic behaviors of battery states have not been considered by the parameter identification methods. In this paper, a SOC and parameter joint estimation method is put forward, where the battery model parameters are identified in real time by a particle filter (PF) with consideration of the battery states. Meanwhile, a cubature Kalman filter (CKF) is used to estimate SOC. Then, experiments under dynamic cycles and different temperature conditions are undertaken to assess the performance of the proposed algorithm when compared with the existing joint estimations. The results show that the proposed joint method can achieve a high accuracy and robustness for SOC estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.