Abstract

Lithium-ion batteries (LIBs) have emerged as the most commercialized rechargeable battery technology. However, their inherent property, called thermal runaway, poses a high risk of fire. This article introduces the “Battery Immersed in Fire Prevention Material (BIF)”, the immersion-type battery in which all of the LIB cells are surrounded by a liquid agent. This structure and the agent enable active battery fire suppression under abusive conditions while facilitating improved thermal management during normal operation. Abuse tests involving a battery revealed that the LIB module experienced fire, explosions, and burnouts with the target cell reaching temperatures of 1405 °C and the side reaching 796 °C. Conversely, the BIF module exhibited a complete lack of fire propagation, with temperatures lower than those of LIBs, particularly 285 and 17 °C, respectively. Under normal operating conditions, the BIF module exhibited an average temperature rise ~8.6 times lower than that of a normal LIB. Furthermore, it reduced the uneven thermal deviation between the cells by ~5.3 times more than LIB. This study provides a detailed exploration of the BIF and covers everything from components to practical applications. With further improvements, this technology can significantly enhance fire safety and prevent the thermal degradation of batteries in the real world.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call