Abstract

Herein, we describe the synthesis and characterization (chemical, structural, and thermal) of a new crystal phase of lithium hydrazinidoborane (LiN2H4BH3, LiHB), which is a new material for solid-state chemical hydrogen storage. We put in evidence that lithium hydrazinidoborane is a polymorphic material, with a stable low-temperature phase and a metastable high-temperature phase. The former is called β-LiHB and the latter α-LiHB. Results from DSC and XRD showed that the transition phase occurs at around 90 °C. On this basis, the crystal structure of the novel β-LiHB phase was solved. The potential of this material for solid-state chemical hydrogen storage was verified by TGA, DSC, and isothermal dehydrogenations. Upon the formation of the α-LiHB phase, the borane dehydrogenates. At 150 °C, it is able to generate 10 wt % of pure H2 while a solid residue consisting of polymers with linear and cyclic units forms. Reaction mechanisms and formation of bis(lithium hydrazide) of diborane [(LiN2H3)2BH2]+[BH4]− as a reaction intermediate are tentatively proposed to highlight the decomposition of β-LiHB in our conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call