Abstract

Solid-state reversible hydrogen storage systems hold great promise for onboard applications. The key criteria for a successful solid-state reversible storage material are high storage capacity, suitable thermodynamic properties, and fast hydriding and dehydriding kinetics. The LiNH2 + LiH system has been utilized as an example system to illustrate these critical issues that are common among other solid-state reversible storage materials. The progress made in thermodynamic destabilization and kinetic enhancements via various approaches are emphasized. The implications of these advancements in the development of future solid-state reversible hydrogen storage materials are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call