Abstract

The present study evaluated the fatigue behavior of monolithic translucent zirconia polycrystals (TZ) and lithium disilicate glass-ceramic (LD) bonded to different substrates. Disc-shaped specimens of ceramic materials TZ and LD were bonded to three substrates with different elastic modulus (E) (fiber-reinforced composite (FRC) – softest material, E = 14.9 GPa; titanium alloy (Ti) – intermediary properties, E = 115 GPa; and zirconia (Yz) – stiffest material, E = 210 GPa). The surfaces were treated and bonded with resin cement (disc-disc set-up). Fatigue testing followed a step-stress approach (initial maximum load = 200 N for 5000 cycles, incremental step load = 200 N for 10,000 cycles/step). The fatigue failure load and number of cycles until failure were recorded and statistically analyzed. Fractographic and finite element (FEA) analyzes were conducted as well. TZ ceramic depicted higher fatigue failure load, number of cycles until failure, and survival probabilities than LD, irrespective of the substrate. Moreover, TZ and LD presented better fatigue behaviors when bonded to substrates Ti and Yz in comparison to FRC. FEA revealed lower tensile stresses at restorative material when bonded to stiffer substrates. Fractography showed that the fracture origin started at bottom surface of restorative material (except for TZ bonded to Yz, in which crack initiated at load contact point). Translucent zirconia polycrystals present superior mechanical behavior than lithium disilicate glass-ceramic. The substrate type influences the mechanical performance of monolithic dental ceramics (stiffer substrates lead to better fatigue behavior).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call