Abstract

We investigated the effects of lithium on alterations in the amount and distribution of protein kinase C (PKC) in discrete areas of rat brain by using [3H]phorbol 12,13-dibutyrate quantitative autoradiography as well as western blotting. Chronic administration of lithium resulted in a significant decrease in membrane-associated PKC in several hippocampal structures, most notably the subiculum and the CA1 region. In contrast, only modest changes in [3H]phorbol 12,13-dibutyrate binding were observed in the various other cortical and subcortical structures examined. Immunoblotting using monoclonal anti-PKC antibodies revealed an isozyme-specific 30% decrease in hippocampal membrane-associated PKC alpha, in the absence of any changes in the labeling of either the beta (I/II) or gamma isozymes. These changes were observed only after chronic (4 week) treatment with lithium, and not after acute (5 days) treatment, suggesting potential clinical relevance. Given the critical role of PKC in regulating neuronal signal transduction, lithium's effects on PKC in the limbic system represent an attractive molecular mechanism for its efficacy in treating both poles of manic-depressive illness. In addition, the decreased hippocampal membrane-associated PKC observed in the present study offers a possible explanation for lithium-induced memory impairment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.