Abstract

Changes in protein kinase C (PKC) (calcium- and phospholipid-dependent protein kinase) activity in rat liver during different metabolic phases of sepsis were studied. Sepsis was induced by cecal ligation and puncture (CLP). Experiments were divided into three groups: control, early sepsis, and late sepsis. Early and late sepsis refers to those animals sacrificed at 9 and 18 h, respectively, after CLP. Hepatic PKC was extracted and partially purified by ammonium sulfate fractionation and DEAE-cellulose chromatography. PKC activity was assayed based on the rate of incorporation of 32p from [gamma-32P]ATP into histone. The results show that during early sepsis, both membrane-associated and cytosolic PKC activities remained relatively unaltered. During late sepsis, membrane-associated PKC was unaffected while cytosolic PKC activity was decreased by 19.5-34.4%. Kinetic analysis of the data on cytosolic PKC during late phase of sepsis reveals that the Vmax values for ATP, histone, Ca2+, phosphatidylserine, and diacylglycerol were decreased by 23.4, 22.1, 19.5, 25, and 34.4%, respectively, with no changes in their Km values. These data indicate that cytosolic PKC activity was inactivated in rat liver during late hypoglycemic phase of sepsis. Since PKC-mediated phosphorylation plays an important role in regulating hepatic glucose metabolism, an inactivation of cytosolic PKC may contribute to the development of hypoglycemia during late phase of sepsis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call