Abstract

miRNAs are small non-coding RNAs that regulate gene expression by binding to the 3′-UTR of genes. Many recent studies have reported that miRNAs play important biological roles by regulating specific mRNAs or genes. Many sequence-based target prediction algorithms have been developed to predict miRNA targets. However, these methods are not designed for condition-specific target predictions and produce many false positives; thus, expression-based target prediction algorithms have been developed for condition-specific target predictions. A typical strategy to utilize expression data is to leverage the negative control roles of miRNAs on genes. To control false positives, a stringent cutoff value is typically set, but in this case, these methods tend to reject many true target relationships, i.e., false negatives. To overcome these limitations, additional information should be utilized. The literature is probably the best resource that we can utilize. Recent literature mining systems compile millions of articles with experiments designed for specific biological questions, and the systems provide a function to search for specific information. To utilize the literature information, we used a literature mining system, BEST, that automatically extracts information from the literature in PubMed and that allows the user to perform searches of the literature with any English words. By integrating omics data analysis methods and BEST, we developed Context-MMIA, a miRNA-mRNA target prediction method that combines expression data analysis results and the literature information extracted based on the user-specified context. In the pathway enrichment analysis using genes included in the top 200 miRNA-targets, Context-MMIA outperformed the four existing target prediction methods that we tested. In another test on whether prediction methods can re-produce experimentally validated target relationships, Context-MMIA outperformed the four existing target prediction methods. In summary, Context-MMIA allows the user to specify a context of the experimental data to predict miRNA targets, and we believe that Context-MMIA is very useful for predicting condition-specific miRNA targets.

Highlights

  • IntroductionMicroRNAs (miRNAs) are small non-coding RNAs that are 19-24 nucleotides in length

  • MicroRNAs are small non-coding RNAs that are 19-24 nucleotides in length

  • The three experiments were pathway analysis, reproducibility of validated miRNA targets in human, and sensitivity tests when different keywords were used for specifying the experimental context

Read more

Summary

Introduction

MicroRNAs (miRNAs) are small non-coding RNAs that are 19-24 nucleotides in length. These RNAs regulate gene expression at the post-transcriptional level by binding to the 30UTR of mRNAs [1, 2]; miRNAs are functionally important. It is reported that miR-15 and miR-16-1 bind to BCL2 [3] and that apoptosis is induced. Another example is that miR-125b, miR-145, miR-21 and miR-155 are dysregulated in breast cancer cells, and different expression levels of these miRNAs have significant correlations with breast cancer phenotypes, such as tumor stages and status of estrogen and progesterone receptors [4]. It is well known that miRNAs are related to proliferation, differentiation, and cell death [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call