Abstract

A pore network model (PNM) aiming at simulating the liquid water pore filling in the cathode gas diffusion layer (GDL) in an operating PEM–fuel cell is presented. Compared to previous works, the model allows simulating a significantly larger range of operating regimes. It notably allows considering the situation where the channel gas is fully humidified both for low temperature operating conditions (∼40 °C) and standard temperature operating conditions (∼80 °C) as well as for intermediate operating temperatures. The model leads to results in good agreement with several experimental observations from the literature. This allows defining a regime diagram summarizing the main operating regimes identified in the course of the study, namely the dry regime, the dominant condensation regime, the dominant liquid injection regime, the mixed regime where both the capillarity controlled invasion in liquid phase from the adjacent layer and condensation are important. The proposed model opens up new perspectives for understanding the water transfer in proton exchange membrane fuel cells and the associated water management and performance degradation issues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.