Abstract

GaN's outstanding physical characteristics allow for a wide range of applications in numerous industries. Although individual GaN-based ultraviolet (UV) photodetectors are the subject of in-depth research in recent decades, the demand for photodetectors array is rising as a result of advances in optoelectronic integration technology. However, as a prerequisite for constructing GaN-based photodetectors array, large-area, patterned synthesis of GaN thin films remains a certain challenge. This work presents a facile technique for pattern growing high-quality GaN thin films for the assembly of an array of high-performance UV photodetectors. This technique uses UV lithography, which is not only very compatible with common semiconductor manufacturing techniques, but also enables precise patterning modification. A typical detector has impressive photo-response performance under 365nm irradiation, with an extremely low dark current of 40 pA, a high Ilight /Idark ratio over 105 , a high responsivity of 4.23 AW-1 , and a decent specific detectivity of 1.76 × 1012 Jones. Additional optoelectronic studies demonstrate the strong homogeneity and repeatability of the photodetectors array, enabling it to serve as a reliable UV image sensor with enough spatial resolution. These outcomes highlight the proposed patterning technique's enormous potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.