Abstract

The liquid-crystalline behavior of fluorinated block-structured molecules and the ion transport properties of their complexes with a Li salt have been examined. The block-structured molecules comprise a perfluorinated oligo (ethylene oxide) moiety containing a terminal methyl carbonate or a terminal hydroxyl group and an octadecyl moiety. These molecules exhibit highly ordered smectic phases. The fluorinated molecule with a terminal methyl carbonate possesses an isotropization temperature lower than that of the analogous non-fluorinated molecule. The fluorinated molecule complexed with a Li salt shows ionic conductivities on the order of 10−6 S cm−1 in the smectic phase formed at ambient temperature, while conductivities on the order of 10−5 S cm−1 are observed in the isotropic phase. A perfluorinated oligo (ethylene oxide) monoalkyl ether containing a terminal methyl carbonate has been developed for potential application as quasi-solid-state electrolytes for Li-ion batteries. The fluorinated block-structured molecule self-assembles to form nanosegregated bilayer structures, which can be used for anisotropic Li ion transport when complexed with a Li salt. The complex shows ionic conductivities on the order of 10−6 S cm−1 in the ordered smectic phase formed at ambient temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.