Abstract
The ability to simultaneously quantitate cocaine and its 12 metabolites from pregnant rat blood, amniotic fluid, placental and fetal tissue homogenates aids in elucidating the metabolism and distribution of cocaine. An efficient extraction method was developed to simultaneously recover these 13 components using underivatized silica solid-phase extraction (SPE) cartridges. The overall recoveries for cocaine and its metabolites were studied from pregnant rat blood (47–100%), amniotic fluid (61–100%), placental homogenate (31–83%), and fetal homogenate (39–87%). Extraction of the samples using silica is not classical SPE, but rather allows for the concentration of the sample into a small volume prior to injection and the removal of the proteins due to their strong interaction with the active silica surface. A positive ion mode electrospray ionization liquid chromatography–tandem mass spectrometry (LC–MS–MS) method was used and validated to simultaneously quantitate cocaine and 12 metabolites from these four biological matrices. A gradient elution method with a Zorbax XDB C 8 reversed-phase column was used to separate the components. Multiple reaction monitoring (MRM) of a product ion arising from the corresponding precursor ion was used in order to enhance the selectivity and sensitivity of the method. Low background noise was observed from the complex biological matrices due to efficient SPE and the selectivity of the MRM mode. Linear calibration curves were generated from 0.01 to 2.50 ppm. The method also showed high intra-day ( n=3) and inter-day ( n=9) precision (% RSD) and accuracy (% error) for all components. The limits of detection (LODs) for the method ranged from 0.15 to 10 ppb. The LODs of cocaine and its major metabolites were less than 1 ppb from all four biological matrices. This method was applied to the study of the metabolism and distribution of cocaine in pregnant rats following intravenous infusion to a steady state plasma drug concentration. The following results were observed in the pregnant rat study: (1) the observations correlated strongly with the previous literature data on cocaine metabolism and distribution, (2) cocaine and norcocaine accumulated in the placenta, (3) arylhydroxylation of cocaine was a major metabolic pathway, (4) para-arylhydroxylation of cocaine was favored over meta-arylhydroxylation in rats and (5) accumulation of cocaine and its major metabolites was observed in the amniotic fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Chromatography B: Biomedical Sciences and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.