Abstract
Nadolol, a beta-blocker used in the management of hypertension and angina pectoris, has three chiral centers and is currently marketed as an equal mixture of its four stereoisomers. Enantiomeric separation of nadolol by high-performance liquid chromatography was studied on a column packed with novel heptakis (6-azido-6-deoxy-2, 3-di-O-phenylcarbamolyted) beta-cyclodextrin bonded chiral stationary phase. The retention behavior and resolution of nadolol enantiomers were investigated and discussed with respect to the mobile phase composition and flow rate, pH, ionic strength, and temperature. The optimal separation condition was found; the mobile phase contained 80% buffer solution (1% triethylamine acetate, pH 5.5) and 20% methanol with 0.3 ml/min mobile phase flow rate at a temperature of 20 degrees C. At the optimal conditions, resolution of three stereoisomers of nadolol was obtained with a complete separation of the most active enantiomer, (RSR)-nadolol. Thermodynamic properties including enthalpy and entropy change of binding to the CSP for the enantiomeric separation were also determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.